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Abstract: Urban forests provide ecosystem services; tree canopy cover is the basic quantification of
ecosystem services. Ground assessment of the urban forest is limited; with continued refinement,
remote sensing can become an essential tool for analyzing the urban forest. This study addresses
three research questions that are essential for urban forest management using remote sensing:
(1) Can object-based image analysis (OBIA) and non-image classification methods (such as random
point-based evaluation) accurately determine urban canopy coverage using high-spatial-resolution
aerial images? (2) Is it possible to assess the impact of natural disturbances in addition to other
factors (such as urban development) on urban canopy changes in the classification map created by
OBIA? (3) How can we use Light Detection and Ranging (LiDAR) data and technology to extract
urban canopy metrics accurately and effectively? The urban forest canopy area and location within
the City of St Peter, Minnesota (MN) boundary between 1938 and 2019 were defined using both
OBIA and random-point-based methods with high-spatial-resolution aerial images. Impacts of
natural disasters, such as the 1998 tornado and tree diseases, on the urban canopy cover area, were
examined. Finally, LiDAR data was used to determine the height, density, crown area, diameter,
and volume of the urban forest canopy. Both OBIA and random-point methods gave accurate
results of canopy coverages. The OBIA is relatively more time-consuming and requires specialist
knowledge, whereas the random-point-based method only shows the total coverage of the classes
without locational information. Canopy change caused by tornado was discernible in the canopy
OBIA-based classification maps while the change due to diseases was undetectable. To accurately
exact urban canopy metrics besides tree locations, dense LiDAR point cloud data collected at the
leaf-on season as well as algorithms or software developed specifically for urban forest analysis using
LiDAR data are needed.

Keywords: urban forest; OBIA; random-point-based assessment; high-resolution aerial images;
LiDAR; tornado

1. Introduction

Ecosystem services measure the urban forest’s benefits and economic value in four categories:
supporting (e.g., biodiversity), regulating (e.g., air quality), cultural (e.g., health), and provisioning
(e.g., fresh water) [1]. Measuring urban tree canopy cover and other metrics, such as size and height,
provides the most basic quantification of the urban forest’s potential ecosystem services. Currently,
the most accurate way to collect tree attribute data is by trained personnel collecting individual tree
metrics using ground assessments within an urban forest. However, ground assessments are both
time-consuming and expensive, and it is not physically possible or legal to access every tree within an
urban environment.
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Geospatial technology offers the potential to collect data for the majority of trees within an urban
forest in a timely and cost effective manner [2]. Global Positioning System (GPS), in conjunction
with Geographic Information System (GIS), has proved an invaluable tool when locating, assessing,
and managing urban forests [3,4]. Remote sensing can help map urban forest spatially and show how
the urban forest has changed temporally and in response to natural disasters, e.g., species structure,
canopy height, etc. [5]. Hyperspectral remote sensing has been used to assess individual tree species
and forest health [6,7]. Light Detecting and Ranging (LiDAR) data have also proven to be helpful
in mapping canopy cover and structure [8], extracting tree variables [9–11], estimating biophysical
parameters [12–15], and determining urban forest health [13,16–18].

Remote sensing has also proved instrumental in assessing the impacts of forest disturbance such as
tornados and tree diseases. For example, aerial and ground photographic images were used to describe
and then classify tornado types based on damage [19], assess associated damage [20] and effects [21],
and analyze the direction that trees fell in the tornado event [22]. A combination of Synthetic Aperture
Radar (SAR) and/or multispectral satellite imagery have been used to map land cover change after
the tornado disturbance [23–25]. Finally, tree diseases can also significantly change the forest and
urban forest [26–28]. Remote sensing has demonstrated high potential to map and predict tree diseases
effectively [26–29].

Historically, per-pixel based classification methods have been widely used to map land use and
land cover including urban forest from remote sensing imagery [30–32]. Per-pixel-based methods that
depend on spectral pixel values have limitations, particularly with high-spatial-resolution images.
The increased spectral variance within a designated land cover class in high-spatial-resolution imagery
leads to “salt-and-pepper” effect in the land cover maps generated by per-pixel classifications [32–35].

Object-based image analysis (OBIA), which uses spectral pixel values and the shape, size, spatial,
textural, contextual, and topological information of a set of pixels or objects, has demonstrated its
advantages in land cover extraction from high-spatial-resolution imagery [30,36–38]. In addition to
image classification techniques, the United States Department of Agriculture (USDA) Forest Service’s
i-Tree Canopy, based on random sampling and associated computation of standard error, has also been
used to determine forest canopy cover and ecosystem services [1,39–41].

Can both OBIA and non-image classification methods (such as random-point-based assessment)
accurately determine urban canopy coverage from high-resolution aerial images? What are the
advantages and disadvantages of these methods? To the authors’ knowledge, there have been no
previous studies comparing OBIA with random-point-based assessments to determine long-term
urban forest coverage using historical high-spatial-resolution remote sensing data. In addition, few
studies have focused on analyzing the impacts of natural disasters on urban forest change using
multi-temporal airborne imagery. Therefore, for the OBIA, another goal is to examine if it is possible
to evaluate the impacts of natural disturbances (e.g. tornados and tree diseases) in addition to other
factors (e.g. urban development) on urban canopy changes in the classification maps. Lastly, for urban
forest management, a big challenge is to obtain accurate urban tree metrics efficiently using recently
free downloadable LiDAR data and remote sensing techniques without relying on traditional ground
assessments. For example, for the City of St Peter, before this research began there was no information
known about the City’s total urban forest canopy cover. The only tree metrics known, such as tree
species and diameter at breast height (DBH), were limited to city boulevard trees located on rights of
way (ROW), collected using ground assessment. To meet this challenge, publicly available LiDAR data
was tested to extract various tree metrics, including tree location, height, density, crown area, diameter,
and volume.



Remote Sens. 2020, 12, 1820 3 of 20

2. Materials and Methods

2.1. Study Site

The City of St Peter is situated in Nicollet County, 96 km south of the Minneapolis–Saint Paul
Twin Cities, USA, with the Minnesota River on the east boundary and a bluff to the west (Figure 1).
The coordinates of its central location are 44.323◦N and 93.958◦W. The total area of the City is 14.76 km2

with 11,400 residents [42]. The total boulevard tree population is 4824 trees. The majority of the
population consists of 1414 maple (Acer spp.), 1094 ash (Fraxinus spp.) and other species such as
404 basswood (Tilia spp) and 301 hackberry (Celtis spp.) [43]. On March 29, 1998, between 17:18hrs
and 17:36hrs, a tornado struck the city, and many of the town’s houses, businesses, civil buildings
and urban forests were damaged. Therefore, one aspect of this study examined the impact of the
1998 tornado on the urban canopy cover area. The possibility of detecting forest canopy change due
to the tree diseases Dutch Elm Disease (Ophiostoma ulmi and O. nova-ulmi) and Butternut Canker
(Sirococcus clavigigenti-juglandacearum) was also explored, as hundreds of millions of trees have been
infected since the 1960s in the USA.
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2.2. Data and Preprocessing

The complete methodological process, described in Sections 2.2–2.6, is shown as a schematic
in Figure 2. The research data consisted of digital airborne ortho-images and aerial photographs,
hardcopy historical aerial photographs, scanned images and historical maps, vector data, and LiDAR
data. Tables 1 and 2 provide detailed information regarding the multi-source datasets. Seven selection
criteria determined the aerial images used: (1) high image resolution, i.e., 600 Dots Per Inch (DPI) or
pixel resolution ≥ 0.93 m; (2) minimum map scale of 1:20,000; (3) trees with leaves on; (4) historical
photographic images taken during the same months; (5) images with the full areas within the city
boundary of 1928 and 2017; (6) ease of access to and availability of images; (7) images just prior to and
post the 1998 tornado. The images selected were for 1938, 1951, 1964, 1995, 2008, and 2017 (Table 1).
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Table 1. Photographic images and map datasets.

Data Type Source Image Date File Type Coordinate System Resolution/Scale

Hardcopy
Historical

Engineering
Map

City of St Peter,
Engineers

Office, MN
1928 .tif NAD_1983_HARN_Adj_MN_Nicollet_Feet 600 DPI/1:500

Hardcopy
Historical

Aerial
Photograph

City of St Peter,
Engineers Office,

MN
July–August ˆ 1995 3-band, natural color/.tif NAD_1983_HARN_Adj_MN_Nicollet_Feet 600 DPI/1:600/0.93 m

Digital Vertical
Aerial

Photographs

Minnesota Historical
Aerial Photographs
Online (MHAPO)

July
1938 Panchromatic/.jpg NAD_1983_HARN_Adj_MN_Nicollet_Feet 600–1200

DPI/1:20,000/0.93 m
July
1951 Panchromatic/.jpg NAD_1983_HARN_Adj_MN_Nicollet_Feet 600–1200

DPI/1:20,000 */0.93 m

July–August 1964 Panchromatic/.jpg NAD_1983_HARN_Adj_MN_Nicollet_Feet 600–1200
DPI/1:20,000/0.93 m

Digital NAIP
Ortho-images

United States
Geological

Survey (USGS)

July
2008

4-band; color near
infrared/Geo Tiff NAD_1983_UTM_15N 0.93 m

August 2017 4-Band; color near
infrared/Geo Tiff NAD_1983_ UTM_ 15N 0.93 m

i-Tree Canopy
Ortho-images

United Department
of Agriculture
(USDA) Farm

Service Agency

2008–2019 True-color
composite image WGS 84 Web Mercator 0.93 m

* No Scale shown on photographic image or within metadata from MHAPO or MNDNR. Assumption of scale based
on 1938 and 1964 images that show scale within photographic image. ˆ No data shown for month image captured.
Visual interpretation indicates image captured July–August.

Table 2. Vector and LiDAR datasets.

Data Type Description Source Date File Type Coordinate System Resolution/Scale

Vector Data

City of St
Peter Roads Nicollet County, MN 2017 .shp/Line NAD_1983_HARN_Adj_MN_Nicollet_Feet N/A

Nicollet
County Tax
Parcel data

Nicollet County, MN 2017 shp/Polygon NAD_1983_HARN_Adj_MN_Nicollet_Feet N/A

Nicollet
County City

Limits
Nicollet County, MN 2017 .shp/Polygon NAD_1983_HARN_Adj_MN_Nicollet_Feet N/A

Tornado
Tracts

National Oceanographic
and Atmospheric

Administration (NOAA)
1950–2017 .shp/Line GCS_North_American_ 1983 N/A

LiDAR Data * LiDAR
Point Cloud

Minnesota Department of
Natural

Resources (MNDNR)
2010 .laz NAD_1983_UTM_Zone_15N

Resolution/Nominal
Pulse

Spacing (m) = 1.25

* Data collected in leaf-off periods, April 8–May 5 and November 2–19, 2010, via fixed-wing aircraft equipped
with LiDAR system (Optech Gemini) including differential GPS unit and inertial measurement system. Area data
horizontal positional accuracy: acquired at or below 1700 m above mean terrain with a horizontal accuracy of
2.54 cm. Vertical positional accuracy values (RMSE): better than 10 cm. Fundamental vertical accuracy of the
classified bare earth: 0.08 cm at 95% confidence level in the ‘open terrain’ land cover category. Diminished accuracy
expected in areas of dense vegetation due to fewer points defining bare earth in those areas [44].

To prepare the images, first, the 1938 and 1964 Black and White (B+W) panchromatic images were
cropped to remove black borders and distorted sections of the image deemed unsuitable for analysis,
e.g., incorrect tone. Second, the 1995 aerial image and the 1928 engineering map were transferred from
hard copy to soft copy by digital scan (3-band, natural color at 600 DPI). Third, the 1938, 1951, 1964,
and 1995 aerial photographic images lacked camera parameters and exterior orientation parameters [2]
and could not be orthorectified. Therefore, the photographic images and the 1928 engineering map
were georeferenced [2] within ArcGIS 10.6.

The root-mean-square errors (RMSEs) range from 1.40 m to 113.60 m; on average, 17 GCPs were
used. The 1951 south image and 1928 engineering map (Table 3) had relatively high RMSEs; both
were georeferenced with a first-order polynomial transformation. The 1928 GCPs were based on a
reference photograph from 1951, due to difficulty in determining viable GCPs in 1938. The high RMSE
is likely due to the limited GCPs available, which were based on the road layout; it is also probable
that the road layout changed between 1928 and 1951. For example, the Saint Peter Broadway Bridge
(highway 99) was remodeled three years after the 1928 engineering map [45]; therefore, the road layout
detailed in 1951 may have changed accordingly. It should be noted that the process for accuracy of
individual images was based on a compromise between both RMSE and visual interpretation due to
the disparity in image type, location of suitable GCPs for overlapping and adjacent images, limited
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availability of GCP sites, and temporal variation of the photographic images when georeferencing.
Therefore, low RMSEs do not guarantee high positional accuracy [46].

Table 3. Georeferencing information.

Image Type
Year

Of Image
(Compass Location)

Reference Data:
Aerial Photographs

Total Root-Mean-Square Error
(RMSE) (m)

Aerial Photograph

1995 2017 NE, NW and SW 6.20
1964 (SW) 2017 NE, NW and SW 11.25
1964 (SE) 2017 NE, NW and SW 3.06

1964 (N) 2006 NE/2017 NE, NW
and SW 22.19

1951 (N) 2006 NW and SW N/A
1951 (S) 2006 NW and SW/1951 N 83.37

1938 (NE) 1951 S and N 6.78
1938 (NW) 1938 NE/1951 S and N 1.40

1938 (S) 1938 NE and NW/1951 S 4.22
Engineering Map 1928 1951 S and N 113.60

After georeferencing, the city limits were digitized and a polygon feature class created from the
1928 engineering map. The 1928 and 2017 feature class boundaries were buffered to 60.96 m for two
reasons. First, the city boundary is a human construct and the urban forest does not conform to a linear
boundary. Using visual estimation, it was determined that no trees in the boundary areas had a canopy
width greater than 121.92 m; therefore, the 60.96-m buffer contained trees within the city boundary.
Second, the 60.96-m boundary and the remaining minimum bounding rectangle with the 1928 and
2017 city boundary was a large enough area to perform validation results on the aerial photographic
images. The 1998 tornado boundary was created by buffering two polyline shapefiles to a distance of
2.01 km, clipping them to the 1928 and 2017 boundary, reflecting the geographic extent of the tornado
as described by the NOAA Storm Prediction Center’s (SPC) United States severe report database [47].

The aerial photographic images were clipped to the 1928 and 2017 city feature classes and a single
raster dataset was created by mosaicking the clipped aerial photographic images. To aid distinction
between land use classes for the B+W panchromatic and 1995 three-band color image, a 3 × 3 variance
(second-order) texture layer was created from the mosaicked photographic images within ERDAS
IMAGINE 2018 [48]. Each texture layer was stacked with the mosaicked photographic image.

2.3. OBIA Urban Forest Canopy Analysis and Change Detection

For analyzing high-resolution B+W panchromatic aerial photographs, texture can be crucial to
maximize extraction of land use categories, particularly forest and urban forest areas [48–50]. B+W
Panchromatic photographs have low radiometric and spectral information and texture adds another
variable for extraction [48]. Feature Analyst, the software chosen for OBIA analysis, includes texture as
an object input [51]; the combination of the texture layer created in ERDAS IMAGINE 2018 and that
included within Feature Analyst gave the best results.

Feature Analyst uses a contextual classifier in its segmentation process which utilizes object
size, edge type, spatial context, and shape to produce vector files that can be edited [51,52]. After
preliminary investigations using this software, it became apparent that the extraction classification
process was most effective if supervised learning using multiple classes (Table 4) was used rather than
unsupervised or a single-class approach [53]. Large shrubs were included within the urban forest, as
it is virtually impossible to differentiate between trees and large shrubs in the B+W panchromatic
images due to the resolution and hue/tone. It also became apparent, as documented by Yuan [48],
that differentiation between grass and soil in the B+W panchromatic images was challenging; the
classes were combined as grass/soil. For consistency, these classes were kept for B+W panchromatic,
three-band natural color, and four-band color infrared images. All the images had some form of
shadow; therefore a shadow/other class was created as detailed in Qiu, Wu [54].
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Table 4. Description of Land Class.

Description Areas

Urban Forest Tree and shrub canopy Boulevards, gardens,
naturalized areas

Water Rivers, ponds, storm water basins,
swimming pools, etc. MN River, gardens, city property

Impervious Surface Roads, buildings, parking lots, etc. Urban and rural

Grass/Soil Agricultural land, gardens, green
spaces, fields, gravel roads, etc.

Boulevards, gardens, naturalized
areas, parks

Shadow/Other Buildings, trees, bridges, etc. Urban and rural

Training samples were manually digitized drawing close to the edge of class features (objects) to
represent the shape, size, spectral content, texture, patterns, and contextual data and to distinguish
them from adjacent objects [54,55]. Due to the differences between the three types of aerial photographic
images, multiple supervised learning operations were repeated using different histogram stretches,
learning options, and input representations to extract each class.

Post-processing of the OBIA data was performed first in ArcGIS by visibly comparing the OBIA
canopy cover class polygons to the photographic images and removing inaccuracies. Second, the OBIA
polygon was converted to raster and imported into ERDAS IMAGINE 2018, where a majority function
using a 3 x 3 window was used to remove single pixels incorrectly classified as canopy cover.

To quantitatively determine and compare canopy change between the years, a post-classification
change detection model was created within ERDAS IMAGINE 2018 [56]. The change detection model
created a thematic layer from a matrix that evaluated two historical image files. This thematic layer
displays the unique difference in the values of the two overlapping original images [57].

2.4. Accuracy Assessment of Urban Forest Canopy cover Extracted by OBIA

For accuracy assessment, a site-specific thematic error matrix [58] and Kappa coefficient were
created, using the method proposed by Zhou and Troy [59]. Stratified random sampling enabled the
canopy and non-canopy classes to be proportionately weighted; there were fewer canopy class features
compared to non-canopy features and these were unevenly distributed [54]. To mitigate against
potential positional inaccuracy, a small difference in cell size between photographic images of different
years, and ensure a representative sample within a category polygon [58], a sample unit of a 5 × 5 pixel
block was created for each year. Congalton and Green [58] state that when the research site is less than
404,686 hectares and 12 classes, a minimum of 50 samples per class is needed for accuracy assessment.
Therefore, 150 samples were used: 50 per class (forest, non-forest) and 50 randomly distributed. As no
higher-resolution images were available for reference data, the same high-spectral-resolution aerial
photographic images were used for the accuracy assessment process. Field sample collection was
possible for the 2017 dataset. The area selected for field sample data was based on the ability to legally
and practically assess areas within the 2017 city boundary: the city owned land (parcel) and the rights
of way (ROW) of all roads within the city boundary (Figure 3).

The field sampling map was created in ArcGIS by buffering the Nicollet County streets shapefile to
reflect the correct ROW distance for streets within the city, dependent on municipal code. This dataset
was merged with the city tax parcel polygon shapefile. Any significant difference between the 2017
photographic image and 2019 ground truthing was mitigated by the researcher’s in-depth knowledge
as the city’s urban forester.
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2.5. Urban Forest Canopy Cover Assessment Using i-Tree Canopy

i-Tree is a freely available suite of urban forest ecosystem service evaluation software, created
by the U.S. Forestry Service and other collaborators [60,61]. i-Tree Canopy is one tool within i-Tree
that allows users to define land cover categories (e.g., water, trees) using a web browser application
(Google Maps and Google Earth) to enable photo interpretation of current and historical aerial imagery
using randomly selected points [62]. The Google Maps 2019 image and the Google Earth 2008 image
were selected for their relevance.

Both 1928 and 2017 polygon boundary shapefiles were imported into i-Tree Canopy and five classes,
as per OBIA, were created. Employing the 2019 Google photographic image in Google Maps; one thousand
randomly generated survey points were produced, and, through photo-interpretation, each point was
assigned a class, as recommended by the i-Tree Canopy technical notes [63]. To photo-interpret the 2008
Google Earth image, a Keyhole Markup Language (KML) file, representing the randomly generated
survey points produced for the 2019 images, was imported into Google Earth. Using the 2008 Google
Earth photographic image, each imported point was photo-interpreted and assigned a class.
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2.6. Urban Forest Metrics Detection Using LiDAR

LiDAR data was analyzed with LiDAR360 software [64]. To improve data’s quality, LiDAR data
preprocessing included reclassifying the point cloud and removing outliers. LiDAR360 can re-classify
by machine learning, using a small training sample that was manually corrected to reclassify points
and then using the random forest method along with the training sample to edit the entire dataset in
batches [64]. Initial results were poor; therefore, the following three LiDAR point classification processes
were applied and proved successful. First, bare earth ground points were classified/reclassified using
the improved progressive TIN densification filtering algorithm proposed by GreenValley International
Ltd [64], Zhao, Guo [65]. The maximum building size was set to 160 m, the actual length of the largest
building within the study site. Second, the bare earth ground points were refined by fitting quadratic
surfaces using a concoid filter [64]. The point cloud was classified, paying particular attention to the
vegetation points using the interactive editing module, which allows the user to manually edit points
or groups of points with a profile tool. Finally, to remove topographic relief elevation effects, the LiDAR
points were normalized by subtracting the closest classified bare earth ground point elevation from
other classified points’ z value [64].

To create a canopy height model (CHM), a Spike Free TIN method [64,65] was used to interpolate
a Digital Surface Model (DSM) and a Digital Elevation Model (DEM). Medium vegetation returns
were used instead of first returns to improve accuracy by removing buildings, etc., which in an urban
environment can be higher than the urban canopy. The CHM was created by subtracting the DSM
from the DEM. Canopy cover density was determined by calculating the ratio of medium vegetation
returns to the total number of LiDAR first returns for a pixel [64]. Vegetation below 2 m was removed,
and the pixel size was determined by measuring the width of the largest single tree canopy, 33 m.

Two different tree segmentation models—CHM segmentation and the point cloud segmentation
model—were used to determine individual tree attributes, e.g., tree location, height, crown diameter,
crown area and volume. In CHM segmentation, watershed segmentation recognizes and demarcates
individual tree crowns using the CHM created in the previous step as the input layer. The watershed
segmentation algorithm inverts individual tree canopy points to represent a catchment basin. The level
at which the water would start to overflow the basin represents the bottom of the individual tree
canopy [64,66]. From this segmentation, tree location, height, crown diameter, and crown area can be
calculated. Point cloud segmentation uses the relative spacing between trees. As spacing at the top
of trees is greater than at the bottom, LiDAR points are included or excluded based on their relative
distance to each other, starting at the top of the tree and working down. Using this segmentation
process, the same tree attributes were created [12,64]. To extract tree metrics, a normalized point cloud
consisting of vegetation points was created, and, due to the close proximity of trees in areas within the
research site, the spacing threshold was set to 0.5 m.

3. Results

3.1. Accuracy Assessment of OBIA and Stratified Random Sampling Results

In general, for OBIA (Table 5), the overall classification accuracy was excellent: over 90% except
1995 (89.33%). The overall Kappa statistics show strong agreement (>80%) [58] between the years,
excepting 1995 (0.78%). In general, the error matrix shows that the producer’s accuracy for canopy
(89%–97%) is higher than the user’s accuracy (84%–94%), excepting the 2017 OBIA (1928 boundary).
The error matrices for the entire period 1938–2017 show that the producer’s accuracy (89%–97%)
(omission error) of canopy cover ranges from 3% to 11%; slightly higher than user’s accuracy (84%–94%)
(commission error) of 16% to 6%, excepting the 2017 OBIA (1928 boundary) (Table 5). However,
different producer’s and user’s accuracies were obtained using the 2017 city boundary. Therefore,
accuracy assessment results appear sensitive to the study site boundary. To enhance the OBIA accuracy
assessment validation, ground truthing was conducted. Due to only being able to access public property
combined with local flooding, the area available to ground truth within the city was approximately 1/4
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of the total 2017 boundary. Despite these restrictions, the error matrix is comparable to those within
photointerpretation (Table 5).

Table 5. OBIA error matrix: overall classification accuracy %, overall Kappa statistics, canopy producer’s
accuracy % and canopy user’s accuracy %.

Year Overall Classification
Accuracy (%)

Overall
Kappa Statistics

Canopy Producer’s
Accuracy (%)

Canopy User’s
Accuracy (%)

1938 94.00 0.87 96.43 88.52
1951 92.67 0.84 96.15 84.75
1964 94.67 0.89 96.49 90.16
1995 89.33 0.78 90.32 84.85
2008 96.00 0.92 97.06 94.29

2017 (1928 boundary) 90.67 0.81 86.76 92.19
2017 (2017 boundary) 94.67 0.89 93.65 93.65
2017 (Ground Truth) 92.67 0.82 89.80 88.00

Using standard error (SE), i-Tree’s stratified random sampling has a 95% confidence interval for
2008 and 2019 canopy cover data (1928 boundary) of + or – 1.45, leading to a 31.75%–28.85% canopy
cover estimation, in 2008, and 1.53, equating to a 38.33%–35.27% canopy cover estimation, in 2019.
For the 2019 data (2017 boundary), 31.86%–28.94% canopy cover change was estimated, as the SE is +

or – 1.46 (Table 6).

Table 6. i-Tree’s stratified random sampling, standard error of canopy change statistics.

Year (Boundary) Canopy (ha) % Area +/−SE % Area +SE % Area−SE +SE (ha) −SE (ha)

2008 (1928) 285.20 30.30 1.45 31.75 28.85 298.85 671.02
2019 (1928) 346.38 36.80 1.53 38.33 35.27 360.78 331.98
2019 (2017) 518.36 30.40 1.46 31.86 28.94 543.25 493.47

3.2. Trend of Urban Forestry Canopy Change and the Impacts of the 1998 Tornado and Tree Diseases

For the 1928 City boundary, the OBIA analytical results (Table 7) show a general trend of canopy
increase from 1938 to 2017, with a minimum area in 1938 of 20.68% to a maximum of 35.53% in 2008. Total
canopy area can be split into two specific time frames: pre-1995 and post-1995. Pre-1995 % area ranges
from 20.68% (1938) to 25.97% (1995); post-1995% area ranges from 35.53% (2008) to 35.30% (2017).

Table 7. OBIA canopy change detection.

Canopy (ha) % Area Non-Canopy (ha) % Area Sum of All (ha)

2017 (2017 Boundary) 568.98 33.37 1136.13 66.63 1705.11
2017 (1928 Boundary) 332.30 35.30 608.94 64.70 941.24
2008 (1928 Boundary) 334.47 35.53 606.78 64.47 941.25
1995 (1928 Boundary) 244.47 25.98 696.48 74.02 940.95
1964 (1928 Boundary) 213.61 22.69 727.64 77.31 941.25
1951 (1928 Boundary) 169.47 18.00 771.78 82.00 941.25
1938 (1928 Boundary) 194.67 20.68 746.58 79.32 941.25
2008 (1928 and 1998
Tornado Boundary) 155.74 27.62 408.17 72.38 563.91

1995 (1928 and 1998
Tornado Boundary) 149.11 26.44 414.80 73.56 563.91

i-Tree’s stratified random sampling confirms that from 2008 to 2019 the percentage canopy cover
within the 1928 boundary is ~ 30%–35% (Table 6). From 1938 to 1995 (57 years), canopy cover increased
as a proportion of city area by 5%. From 1995 to 2017 (22 years), canopy cover increased by 10% of the
city area. In fact, the 10% increase occurred between 1995 and 2008 and canopy cover remained stable
from 2008 to 2019.

The canopy change map (Figure 4) shows that between 1938–1995 and 1995–2017 the majority of
canopy increase took place on the east boundary of the city along the Minnesota River flood plain,
within the central urban areas, e.g., streets and backyards and towards the north, west, and south
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boundary edges of the city. The increase in canopy area along the river flood plain is due to a change
in land management; areas shifted from farmland to naturalized woodland. The tornado response
is primarily responsible for the increase in the central urban reforestation. Canopy cover increased
towards the edges of the city boundary, as new development of previous farmland created new areas
for planting trees. While overall canopy cover increased, many areas remained non-canopy areas,
or changed to non-canopy, primarily before 1995. The change to non-canopy is particularly evident
along the Minnesota River flood plain between 1938–1951 and 1964–1995, where the shift in the river’s
position and subsequent flooding have changed the land use. Within the city center, areas have changed
to non-canopy, likely due to redevelopment, e.g., dividing a large parcel containing one property and
trees into smaller parcels containing fewer trees.
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2017 (b) within the City of St Peter.

The canopy change between 1995 and 2008 within the tornado tract (Figure 5) shows increased
canopy cover on streets and backyards, as well as along the Minnesota River flood plain. The canopy
to non-canopy area change during this time span is primarily due to the tornado, as these areas have
changed due to infrastructure conversion or redevelopment, e.g., houses, parking lots. The results of
this study reveal that more than 45% of the canopy cover within the defined F3 tornado (158–206mph)
boundary was lost.

The butternut (Juglans cinerea L.) and, particularly, the American elm (ulmus americana L) trees
were both highly visible within the urban forest and naturalized areas prior to the 1980s, but due to
Dutch Elm Disease and Butternut Canker they have disappeared, excepting a few disease-resistant
“survivor” trees. Due to a probable combination of image resolution and the length of time between
images it was not possible to determine any correlation between the loss of these tree species and
canopy cover. However, up until 1995, canopy cover remained relatively constant, therefore replanting
using other tree species, e.g., maple (Acer spp.), or natural regrowth mitigated the loss.



Remote Sens. 2020, 12, 1820 12 of 20

The results primarily focused on the 1928 city boundary. However, comparing the 1928
(941 hectares) and 2017 (170 hectares) city boundary data for canopy cover for both OBIA and
random sampling for the years 2008 and 2017/19, the data shows that the areas have a comparable
canopy cover of ~34%, even though the 2017 area is almost double that of the 1928 boundary.
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3.3. Urban Forest Canopy Density, Height Assessment and Individual Tree Metrics using LiDAR

LiDAR was used to create a canopy cover density model, CHM, and tree metrics for 2010.
The canopy cover model shows the total canopy coverage within a pixel area of 10.06 m2. Although
the resolution of canopy coverage is low compared to the OBIA 2008 data (0.28 m2), the two datasets
corroborate each other with respect to canopy cover (Figure 6).

Figure 7 shows canopy cover height. The majority of the highest canopy and tallest trees are in
naturalized areas within the flood plain (>12.19m), which is expected due to environmental conditions,
e.g., soil, nutrients, water allocation, etc., allowing extended growth of pioneer species specific to the
environment, such as poplar (e.g. Populus deltoides). Isolated areas of high canopy within the city center
are trees that survived the tornado. The path of the tornado through the city (Figure 7) is visible, as
is the lower height of the canopy within the tornado tract compared to the canopy height north and
south of the tornado boundary. The high canopy located on the west boundary in the flood plain is
due to the density of trees protecting them from wind exposure as compared to isolated individual
trees within the urban environment.

The tree attributes determined for both the Canopy Height Model (CHM) and point cloud (PC)
segmentation processes were tree location, tree height, crown diameter, and crown area. The point
cloud segmentation process also provided crown volume. However, both processes extracted a different
number of trees. Table 8 shows a selection of tree attributes for trees located along the south west
corner of Minnesota Square Park (Figure 8). Both the x and y tree locations are accurate. However,
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the remaining metrics each have accuracy discrepancies and cannot be rectified without performing
regression analysis, not included within this study.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 21 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 
Figure 6. LiDAR canopy density. 

Figure 7 shows canopy cover height. The majority of the highest canopy and tallest trees are in 
naturalized areas within the flood plain (>12.19m), which is expected due to environmental 
conditions, e.g., soil, nutrients, water allocation, etc., allowing extended growth of pioneer species 
specific to the environment, such as poplar (e.g. Populus deltoides). Isolated areas of high canopy 
within the city center are trees that survived the tornado. The path of the tornado through the city 
(Figure 7) is visible, as is the lower height of the canopy within the tornado tract compared to the 
canopy height north and south of the tornado boundary. The high canopy located on the west 
boundary in the flood plain is due to the density of trees protecting them from wind exposure as 
compared to isolated individual trees within the urban environment. 

Figure 6. LiDAR canopy density.



Remote Sens. 2020, 12, 1820 14 of 20
Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 
Figure 7. LiDAR canopy height model. 

The tree attributes determined for both the Canopy Height Model (CHM) and point cloud (PC) 
segmentation processes were tree location, tree height, crown diameter, and crown area. The point 
cloud segmentation process also provided crown volume. However, both processes extracted a 
different number of trees. Table 8 shows a selection of tree attributes for trees located along the south 
west corner of Minnesota Square Park (Figure 8). Both the x and y tree locations are accurate. 
However, the remaining metrics each have accuracy discrepancies and cannot be rectified without 
performing regression analysis, not included within this study. 

Figure 7. LiDAR canopy height model.

Table 8. LiDAR tree attributes from sample area using the canopy height model (CHM) and point
cloud (PC) method.

Segmentation Process Tree ID Tree
Location X

Tree
Location Y

Tree
Height (m)

Crown
Diameter

(m)

Crown
Area (m2)

Crown
Volume

(m3)

CHM 212174 423011.80 4907701.84 12.60 25.76 521.28 N/A
PC 26684 423013.49 4907699.86 14.44 38.98 1193.32 5790.00

CHM 212242 423019.00 4907693.44 11.46 19.10 286.56 N/A
PC 26706 423023.39 4907692.63 13.38 12.11 115.16 571.67

CHM 212267 423027.40 4907689.84 12.41 13.05 133.99 N/A
PC 26670 423029.57 4907687.71 14.88 14.81 172.29 849.70

CHM 212285 423033.40 4907687.44 12.44 11.73 108.00 N/A
PC 26695 423040.18 4907683.88 13.68 31.56 782.18 4682.06

CHM 212299 423029.80 4907685.04 11.71 9.08 64.80 N/A
PC No Value No Value No Value No Value No Value No Value No Value

CHM 212324 423037.00 4907682.64 11.98 19.15 288.00 N/A
PC No Value No Value No Value No Value No Value No Value No Value

CHM 212355 423049.00 4907680.24 8.62 11.57 105.12 N/A
PC No Value No Value No Value No Value No Value No Value No Value
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4. Discussion

4.1. Comparision of the Urban Canopy Cover Assessment Methods and Factors of Urban Canopy
Cover Changes

The accuracy assessment results of the OBIA and the random-point-based sampling methods
(Tables 5 and 6) indicate that both analysis techniques are accurate enough to assess urban canopy
cover change based on high-spatial-resolution remote sensing images. The difference in results may be
partially attributed to a difference in image quality and resolution, e.g., Google imagery compared
to NAIP imagery [63]. Whilst comparable, i-Tree random-point-based assessment only shows the
total coverage of the classes and cannot detail the locations of canopy change over time; however,
the stratified random sampling technique is quick, taking days to complete compared to weeks for
OBIA. In addition, a possible answer for the lower classification accuracy for 1995 based on the OBIA
(Table 5) is that the 1995 photographic image has relatively low spectral variability even though it was
scanned at a high spatial resolution. Because the digitally scanned image is essentially a copy of the
hardcopy photograph, not the original negative, spectral information can be lost during the scanning
process, according to Feature Analyst’s product support lead, William Veteto.

Natural disasters, urban development, and the shift of the Minnesota River channel are the
main factors for urban forest cover change in this study area. The 1998 tornado caused considerable
damage to both grey and green infrastructure. As mentioned in Section 3.2, a minimum of 45% of the
canopy cover within the tornado tract was lost between 1995 and 2008. After the tornado, the City
implemented a tree replanting regime. Forty percent of the planting occurred within the tornado tract,
with 60% planted in remaining areas of the city. Replanting led to a 10% increase in canopy cover
by 2008, especially in the central urban area, and led to a total canopy cover of 35% that has since
remained stable. Changes in land management (e.g., farmland converted to naturalized woodland) led
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to the increase in canopy area along the river flood plain. Urban canopy change to non-canopy within
the city center areas could also be attributed to urban redevelopment. The shift in the river’s position
and subsequent flooding have caused an evident change to non-canopy along the Minnesota River
flood plain between 1938–1951 and 1964–1995. Nevertheless, due to the limitations of the spectral and
temporal resolutions of the images used in this study, it was not possible to determine the canopy
cover change caused by tree diseases.

4.2. Limitations and Potentials of Canopy Metrics Extraction using LiDAR Data Analysis

Except for tree locations, the other canopy metrics determined for both CHM and PC segmentation
processes based on the LiDAR data demonstrated remarkable discrepancies (Table 8). For example,
tree heights for both processes vary by 0.91–2.43 m. For crown diameter and crown area, the differences
are even greater between processes, e.g., for the same tree crown diameter (CHM 25.76 m vs. point
cloud 38.98 m) and crown area (CHM 521.28 m2 vs. point cloud 1193.32 m2). These canopy metrics’
accuracy is limited by several factors. Firstly, the research LiDAR was collected with the leaves off;
forestry research LiDAR is typically collected with the leaves on. Secondly, the LiDAR point cloud
was 0.08 points/m2, 2.25 times less dense than the minimum commonly used within LiDAR-derived
forest research, 0.18 points/m2 [12,66,67]. Thirdly, after improvement of the LiDAR data quality, errors
remained in the point cloud classification and therefore there is the potential to locate trees where
none exist. More detailed information about this can be found in Blackman [68]. Fourthly, LiDAR360
offers only one algorithm for CHM segmentation, based on a paper that uses an algorithm where
the research location is oak savannah woodland, not an urban forest. The only building structure
was a fire lookout, removed from the data prior to the assessments [66]. Likewise, there is only
one point cloud segmentation algorithm provided by LiDAR360 software based on a previous study
that uses a segmentation algorithm where the research area is a mixed conifer forest, not an urban
environment [12]. In conclusion, the canopy metrics analysis is limited by the quality of the publicly
available LiDAR data and the limitations of the LiDAR data processing software.

5. Conclusions

This paper has shown the importance of remote sensing techniques to extract invaluable
information from historical data sources. It demonstrated that both the OBIA and the point-based
non-image classification approach could determine the temporal change in the canopy cover accurately
from historical aerial images. The point-based random sampling method is an efficient method to
determine the urban forest canopy cover area but lacks locational information. In contrast, the OBIA
offers the ability to ascertain spatial-temporal canopy change leading to more detailed analysis, but this
can be time-consuming and requires specialist knowledge. Based on this research, urban forest
stakeholders can now choose whether to use OBIA or random-point-based assessment to determine
urban tree canopy cover dependent on their specific purposes.

The post-classification comparison change analysis indicated that the 1998 tornado had the largest
impact on canopy cover changes in the study site in addition to the other two identified factors
—urban development and the shift of the Minnesota River channel. However, tree disease impact
on canopy cover was undetectable in the OBIA-based classification maps derived from the historical
aerial images. This might be partially attributed to a limitation of the study—only having access to
hard-copy historical images acquired in some discrete years but lacking access to digital multi-spectral
airborne images with high spectral and temporal resolutions.

The research also revealed the value and potential of LiDAR data and techniques to determine
urban forest metrics. However, the canopy metrics analysis in this study is limited by the quality of the
freely available LiDAR data and the limitations of the LiDAR data processing software. To accurately
extract canopy metrics (such as crown area, diameter, and volume) in addition to locations of
urban canopies, more dense LiDAR point cloud data collected during the leaf-on season, sample
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and independent variable data, as well as LiDAR processing software with algorithms developed
specifically for urban forest analysis are needed.
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